A Practical Software Fault Measurement and Estimation Framework

Allen P. Nikora John C. Munson
Jet Propulsion Laboratory, Computer Science Department
California Institute of Technology University of Idaho
Pasadena, CA 91109-8099 Moscow, ID 83844-1010
Allen.P.Nikora@jpl.nasa.gov jmunson@cs.uidaho.edu
Abstract

Over the past several years, researchers have been investigating methods of
estimating the number of faults inserted into a software system during its development.
One technique that has been developed is based on the observation that the amount of
measured structural change between subsequent versions of a software system is strongly
related to the number of faults inserted between those versions. If the structural evolution
of a software system can be measured during the entire implementation activity, it is
possible to estimate the number of total number of faults that have been inserted.
Furthermore, the number of faults remaining when the system is turned over to operations
can be estimated by subtracting the number of faults actually discovered and removed
during testing and other fault identification activities (e.g., inspections) from the
estimated total number of inserted faults. To make use of this technique, a practical
structural measurement capability has to be developed and integrated into the software
development environment. We describe a measurement capability we have implemented
on several projects at the Jet Propulsion Laboratory, which consists of three components:

e Structural measurement —modules that have changed since the last set of
measurements were taken are identified, measured against a baseline, and have
their fault indices computed.

e Fault burden computation — the fault indices are used to compute each module’s
proportional or absolute fault burden.

e Fault measurement and identification — for each fault repaired, the point at which
it was inserted into the system is determined. This information is used to develop

a model from which absolute fault burdens can be estimated.

The first two components can be automated by integrating the measurement tools into the
development environment. The third component remains a manual activity. However,
even if the third component is not implemented, useful information in the form of
proportional fault burdens at the module level may be obtained from the first two
components.

We also identify issues associated with implementing a measurement framework.
These include:

o Identifying a set of structural measurements.

Creating standards for those measurements.

Establishing a measurement baseline.

Identifying and counting faults in a consistent manner.

Discriminating between fault repair and other changes made to the software.

A Practical Software Fault
‘Measurement and Estimation
Framework

llen P. Nikora John C. Munson
and Control Section | Computer Science Department

o ropt sion Laboratory University of Idaho
Cal_lforma Institute of Moscow, ID 83844-1010
- Technology

imunson@cs.uidaho.edu

; Allen P.Nikora@jpl.nasa.qgov

The work described in this presentation was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration. The work was
sponsored by the National Aeronautics and Space Administration’s IV&V
Facility and the JPL Center for Mission Information Systems and Software
. (CSMISS) Software Engineering Technology Work Area

i

|

i
.

| |

i

B Topics

asurement Overview

. Fu t Measurement and Estimation
Frameg; ork

. +Stru ctural Measurement
H»x =ault Identification and Counting
e + Fault Burden Computation
= Summary
* References

ISSRE’2001

Measurement Overview

asurement Is central to any engineering

process

= All software design decisions governed by
measurable outcomes

All code development controlled by
measurable outcomes

i il AII software test activity controlled by
~ measures of test activity

" All software reliability decisions quantified

ISSRE’2001 3

Measurement Overview

Fault content during development can be estimated
Ng measurements of system’s structural
ution [Mun98,Niko981].

e structural measurements each time a new

nalyze raw measurements with respect to a
baseline set of measurements

+ Compute fault index via principal components
analysis [Dillon84]

+ Track structural evolution by recording
differences between fault indices for subsequent
versions of each module comprising the system.
. + Difference is termed fault change

+ Absolute value of difference is termed net fault change
| ISSRE’ZOOI 4

Fault Measurement and Estimation Framework

Extract '

Repaired
Source Files
Problem 5 'de““;)’l Repaired File
; Reports ourcei nes IDs
Repaired

Repaired
Source Files

Compare
)| Repairs to Rggiuolas
Faulty Files —
Extract Faulty Faulty
Source Files Source Files Fault
Measurement
h . Find Initial — Add fault and
Igzsﬂiy D'S;:J'Ifsred Fault Ilglgf(le;?aur:: placement to Identification
Occurrence repository
: . Add structural
Extract Most recently Measure most Raw structural measurements module name,
changed »- changed source recently changed measurements to repository) revision number,
source files files source files fault count
+ module name, revision number,
structural measurements
‘ Place fault
Measurement Compute Fault O module name,
Baseline fault index indices “:glcoess{tlonto rewgalr: irrlll:ir:)?er’ > Measurement StI’UCtural
P v Repository Measurement

maodule names; revision ‘numbers, fault indices

module name, revision number,

fault index, fault count module names, reviaion numbers, Compute
it i
ault indices F au lt

PS)%ngre(ilgﬁal Proportional

Fault Burden Fault Burden Develon fault c Burden
ol ,‘l - eﬁ,?tgnf y absg{gtzu;:ult Absolute
IS§RE§2?01; - regression model coefficients burden Fault Burden 5

oo

G

- Measurement Framework

o aual activity...

- +Butis not necessary to get useful
. = information.

+ Proportional fault burdens may be

estimated without failure and fault
information.

ISSRE’2001

Structural Measurement

tablish a measurement baseline
Performed infrequently

- Must be done at least once at the start of a
measurement effort
+ Baseline should also be changed as follows:
_ + For a system with multiple releases (e.g., more than 2)
1ange baseline after each release.
4+ Re-establish baseline if measurement tools change —
l experience indicates that no two tools make
. _measurements the same way
+ Establish separate baseline for each
programming language

ISSRE’2001

Structural Measurement (cont’d)

ntify source modules that have changed since the
of structural measurements was made

sure each time developers check modules into

+ For a large development effort, measurement overhead
might become large enough to pose burden on
developers

& At aregular time each day (preferably when few or
~__nho developers are on the system), identify all of
. the modules that have changed since the last time
rheasurements of the system were taken

+ Developers don’t notice measurement overhead

+ Failure of measurement mechanism will not affect
developers

ISSRE’2001 8

~Structural Measurement (cont'd)

Take structural measurements of the identified

. ;M«systems may offer different views of a
| system

+ components that have completed unit test

+ components that have completed integration test

+ Need to strike balance
+ compare systems of similar maturity, and

+ obtain enough measurements throughout the
system’s development to constitute a “good” change
history

\ .+ Recommend measuring components that have
Lo

” . passed unit tests, but have not yet been integrated
| ISSRE2001 9

R
~ Structural Measurement (cont’d)

AR/CR Tracking AR/CR
Environment Rejected

AR — Anomaly Report
CR — Change Request

e AN R
Submitted] Hng
Assignment
Development
Environment
________ - """"-"-""" r-~"~">""">"/""/""/""/"“""=“"?"=”"-"/“"7"7/"7/"7/"7//7/771
Dev Stable view Test view

|
|
|
Dev ‘
Comblete Subsys Subsys %» Integr Integr Test
P> Test 1€ Prest Comp Build [Test [®] Complete [>| Release
|
|
|
I
|
|
|
I

e i | o e it el

— fest
Measure software and Hold
compute fault indices
Developer CM Extract CM Extract l CM Extract
Checkout/ A
checkin Dev Stable Integ. Build
Dev Reference Test Reference n.n.n
Directory R.eference Director;
Directory y
Local Developer Build n.n.n
Work Areas Delivery

ISSRE2001 10

l ;

Hl

- Structural Measurement (cont’d)

|+ Structure

. +Style

; i oy Nesting

~ « Different languages may have different domains
+ Previous work did not include O-O measurement

ISSRE’2001 11

*i{‘sed to estimate a module’s fault burden
~ (proportional or absolute)

= Ratio of two module’s fault indices
~Iindicates how many more faults one
r module has than another

] Absolute fault burden can be estimated by

& d sing fault index as input to a (regression)
“model relating the fault index to the
number of faults

ISSRE’2001 12

Fault Standard

t standard must be created for all fault
)rding processes.

id fault standard has the properties that:

. AII developers will record faults in exactly the
same way

+ All developers will enumerate faults in exactly
the same manner.

" F:"agult standard must be evaluated by experiment

ISSRE’2001 13

Fault Identification and Counting

~ « For each failure, identify all source files changed
_ in making repairs

entify individual faults removed from software

sponse to a failure

mpare repaired source files to versions of those
irce files containing the faults

ply fault identification and counting rules
<098,Niko981] to the resulting differences between

1e two sets of files.

. For e;ad’h_'fault identify point at which it was first
inserted into the software

¢ Search all previous versions of module to identify
version in which fault first appeared

¢ Measure structural difference between version in

which fault initially appeared and immediately
preceding version.

+ Develop regression model relating number of
| faults inserted per unit structural change.
. ISSRE12001 | 14

|
|
|
{

: | i
I [
| :
i i
i ‘

- Fault Identification and Counting

(cont’d)

Changes made in response to a failure must be
separated from other types of changes (e.g.,
~addition of new functionality, modification of
existing functionality).

| I -

 fault measurements

1ay make their construction impossible.

. rOJectmana_gement can establish and enforce
~ following policy:

g to do so will lead to unquantifiable noise

racy of regression models will be reduced,

+ Do not make re{)airs and other types of changes

to a component at the same time

+ First make the repairs, verify them, and check
them into the configuration library

+ Use the repaired version as the basis for
enhancing or adding functionality
ISSRE’2001

i
i
b
‘ A
- i
[I

15

|
|

Fault Identification and Counting
< (cont'd)

"""" ne revision control and problem reporting

systems have features that will help to implement

this policy. An example follows:

g = S

The CM system unit of work is a “change
ackage”

-+ Change packages created for problem reports, new
~_functionality, or requirements change requests (CR)
~ + Work associated with a problem report/CR/new
functionality is checked into the change package.

~+ Problem reporting system is tied to the CM

. system in such a way that for each new failure
. Eeport created, a change package is created in
~the configuration library

+ Automatically provides a place for developers to submit
the repairs

+ However, successful enforcement is ultimately the
responsibility of project management and the
development teams.

ISSRE’2001 16

a
e
o

Fault Burden Computation

‘Proportional Fault Burden

«Compute ratio of its cumulative net fault
ange to the sum of the cumulative net fault
ange values for all modules in the system.

s Example: if the cumulative net fault change for
- _module A is 7, and the sum of the cumulative net
""""" fault change values for all modules in the system is
140, we would expect module A to have had inserted
.. mto it 7/140, or 5%, of the total number of faults
 inserted into the system. The proportional fault
burden of module A would be 5%.

‘ Absolute Fault Burden

%é \

i } U Use regression model to predict number of
F faults inserted
o + Inputs — fault change, net fault change

+ Output — number of faults inserted
ISSRE’2001 17

Summary

cent work showing that a software system’s
sured structural is related to its fault content
ed to the development of a practical

rement framework.

ural measurement activities can be
_automated by means of scripts interacting with
the revision control system being used for the
development effort

¢ Scripts run at regularly-scheduled intervals to

+ ldentify and measure the modules that have changed
- since the last time measurements were taken

+ Compute fault indices

+ Fault indices alone can be used to estimate the
~ proportional fault burden of a given module at
. any time.

|

- ISSRE"2001 13

Summary (cont’d)

stimating absolute fault burden requires
nformation obtained by tracing repaired faults
back to the version of the module(s) in which
originally appeared
_ annot be completely automated

+ Also difficulty of separating changes due to fault
repair from changes due to adding or enhancing
functionality. Policies can be developed to require

that these types of changes be given different types
of labels in the configuration library, but software

managers and development team leads are ultimately
_ be responsible for enforcing such policies.

| szsREzom L 19
. r» ‘

!
;

[Niko981]

ISSRE’2001

References

W. R. Dillon, M. Goldstein, Multivariate Analysis Methods and
Applications, John Wiley and Sons, 1984, ISBN 0-471-08317-8

J. Munson, A. Nikora, “Estimating Rates of Fault Insertion and Test
Effectiveness in Software Systems”, proceedings of the Fourth ISSAT
International Conference on Quality and Reliability in Design, Seattle,

WA’ August 12-14, 1998

_A. P. Nikora, "Software System Defect Content Prediction From
Development Process and Product Characteristics"”, Ph.D.
_f);issertation, May 1998, University of Southern California, Computer
_ Science Department

A Nikora, J. Munson, “Determining Fault Insertion Rates For Evolving

Software Systems”, proceedings of the Ninth International
Symposium on Software Reliability Engineering, Paderborn,
Germany, November 4-7, 1998.

20

